Climate and Average Weather Year Round in Sofia BulgariaIn Sofia, the summers are warm and mostly clear and the winters are very cold, snowy, and partly cloudy. Over the course of the year, the temperature typically varies from 22°F to 83°F and is rarely below 10°F or above 93°F. Based on the tourism score, the best time of year to visit Sofia for warm-weather activities is from mid June to mid September. Average Temperature in SofiaThe warm season lasts for 3.4 months, from June 2 to September 15, with an average daily high temperature above 74°F. The hottest month of the year in Sofia is July, with an average high of 82°F and low of 58°F. The cold season lasts for 3.3 months, from November 23 to March 2, with an average daily high temperature below 46°F. The coldest month of the year in Sofia is January, with an average low of 23°F and high of 37°F.
The figure below shows you a compact characterization of the entire year of hourly average temperatures. The horizontal axis is the day of the year, the vertical axis is the hour of the day, and the color is the average temperature for that hour and day. Parsons, West Virginia, United States (5,021 miles away) is the far-away foreign place with temperatures most similar to Sofia (view comparison). CloudsIn Sofia, the average percentage of the sky covered by clouds experiences significant seasonal variation over the course of the year. The clearer part of the year in Sofia begins around June 8 and lasts for 3.4 months, ending around September 20. The clearest month of the year in Sofia is July, during which on average the sky is clear, mostly clear, or partly cloudy 87% of the time. The cloudier part of the year begins around September 20 and lasts for 8.6 months, ending around June 8. The cloudiest month of the year in Sofia is December, during which on average the sky is overcast or mostly cloudy 51% of the time.
PrecipitationA wet day is one with at least 0.04 inches of liquid or liquid-equivalent precipitation. The chance of wet days in Sofia varies throughout the year. The wetter season lasts 3.0 months, from April 5 to July 5, with a greater than 24% chance of a given day being a wet day. The month with the most wet days in Sofia is May, with an average of 9.8 days with at least 0.04 inches of precipitation. The drier season lasts 9.0 months, from July 5 to April 5. The month with the fewest wet days in Sofia is January, with an average of 5.1 days with at least 0.04 inches of precipitation. Among wet days, we distinguish between those that experience rain alone, snow alone, or a mixture of the two. The month with the most days of rain alone in Sofia is May, with an average of 9.8 days. Based on this categorization, the most common form of precipitation throughout the year is rain alone, with a peak probability of 34% on May 30.
RainfallTo show variation within the months and not just the monthly totals, we show the rainfall accumulated over a sliding 31-day period centered around each day of the year. Sofia experiences some seasonal variation in monthly rainfall. Rain falls throughout the year in Sofia. The month with the most rain in Sofia is June, with an average rainfall of 2.1 inches. The month with the least rain in Sofia is January, with an average rainfall of 0.5 inches.
SnowfallAs with rainfall, we consider the snowfall accumulated over a sliding 31-day period centered around each day of the year. Sofia experiences significant seasonal variation in monthly snowfall. The snowy period of the year lasts for 5.1 months, from October 31 to April 3, with a sliding 31-day snowfall of at least 1.0 inches. The month with the most snow in Sofia is January, with an average snowfall of 4.5 inches. The snowless period of the year lasts for 6.9 months, from April 3 to October 31. The least snow falls around July 20, with an average total accumulation of 0.0 inches.
SunThe length of the day in Sofia varies significantly over the course of the year. In 2024, the shortest day is December 21, with 9 hours, 2 minutes of daylight; the longest day is June 20, with 15 hours, 20 minutes of daylight.
The earliest sunrise is at 5:48 AM on June 15, and the latest sunrise is 2 hours, 9 minutes later at 7:57 AM on January 4. The earliest sunset is at 4:52 PM on December 8, and the latest sunset is 4 hours, 16 minutes later at 9:08 PM on June 26. Daylight saving time (DST) is observed in Sofia during 2024, starting in the spring on March 31, lasting 6.9 months, and ending in the fall on October 27. The figure below presents a compact representation of the sun's elevation (the angle of the sun above the horizon) and azimuth (its compass bearing) for every hour of every day in the reporting period. The horizontal axis is the day of the year and the vertical axis is the hour of the day. For a given day and hour of that day, the background color indicates the azimuth of the sun at that moment. The black isolines are contours of constant solar elevation. MoonThe figure below presents a compact representation of key lunar data for 2024. The horizontal axis is the day, the vertical axis is the hour of the day, and the colored areas indicate when the moon is above the horizon. The vertical gray bars (new Moons) and blue bars (full Moons) indicate key Moon phases. HumidityWe base the humidity comfort level on the dew point, as it determines whether perspiration will evaporate from the skin, thereby cooling the body. Lower dew points feel drier and higher dew points feel more humid. Unlike temperature, which typically varies significantly between night and day, dew point tends to change more slowly, so while the temperature may drop at night, a muggy day is typically followed by a muggy night. The perceived humidity level in Sofia, as measured by the percentage of time in which the humidity comfort level is muggy, oppressive, or miserable, does not vary significantly over the course of the year, staying within 1% of 1% throughout.
WindThis section discusses the wide-area hourly average wind vector (speed and direction) at 10 meters above the ground. The wind experienced at any given location is highly dependent on local topography and other factors, and instantaneous wind speed and direction vary more widely than hourly averages. The average hourly wind speed in Sofia experiences mild seasonal variation over the course of the year. The windier part of the year lasts for 5.6 months, from November 9 to April 27, with average wind speeds of more than 6.1 miles per hour. The windiest month of the year in Sofia is February, with an average hourly wind speed of 7.0 miles per hour. The calmer time of year lasts for 6.4 months, from April 27 to November 9. The calmest month of the year in Sofia is August, with an average hourly wind speed of 5.2 miles per hour.
The predominant average hourly wind direction in Sofia varies throughout the year. The wind is most often from the north for 4.0 months, from May 29 to September 30, with a peak percentage of 46% on July 15. The wind is most often from the south for 2.0 months, from September 30 to November 29, with a peak percentage of 35% on November 13. The wind is most often from the west for 6.0 months, from November 29 to May 29, with a peak percentage of 38% on January 1. Best Time of Year to VisitTo characterize how pleasant the weather is in Sofia throughout the year, we compute two travel scores. The tourism score favors clear, rainless days with perceived temperatures between 65°F and 80°F. Based on this score, the best time of year to visit Sofia for general outdoor tourist activities is from mid June to mid September, with a peak score in the third week of July. Tourism Score in SofiaThe beach/pool score favors clear, rainless days with perceived temperatures between 75°F and 90°F. Based on this score, the best time of year to visit Sofia for hot-weather activities is from early July to mid August, with a peak score in the last week of July. Beach/Pool Score in SofiaMethodologyFor each hour between 8:00 AM and 9:00 PM of each day in the analysis period (1980 to 2016), independent scores are computed for perceived temperature, cloud cover, and total precipitation. Those scores are combined into a single hourly composite score, which is then aggregated into days, averaged over all the years in the analysis period, and smoothed. Our cloud cover score is 10 for fully clear skies, falling linearly to 9 for mostly clear skies, and to 1 for fully overcast skies. Our precipitation score, which is based on the three-hour precipitation centered on the hour in question, is 10 for no precipitation, falling linearly to 9 for trace precipitation, and to 0 for 0.04 inches of precipitation or more. Our tourism temperature score is 0 for perceived temperatures below 50°F, rising linearly to 9 for 65°F, to 10 for 75°F, falling linearly to 9 for 80°F, and to 1 for 90°F or hotter. Our beach/pool temperature score is 0 for perceived temperatures below 65°F, rising linearly to 9 for 75°F, to 10 for 82°F, falling linearly to 9 for 90°F, and to 1 for 100°F or hotter. Growing SeasonDefinitions of the growing season vary throughout the world, but for the purposes of this report, we define it as the longest continuous period of non-freezing temperatures (≥ 32°F) in the year (the calendar year in the Northern Hemisphere, or from July 1 until June 30 in the Southern Hemisphere). The growing season in Sofia typically lasts for 6.1 months (185 days), from around April 17 to around October 19, rarely starting before March 30 or after May 3, and rarely ending before October 2 or after November 6. Growing degree days are a measure of yearly heat accumulation used to predict plant and animal development, and defined as the integral of warmth above a base temperature, discarding any excess above a maximum temperature. In this report, we use a base of 50°F and a cap of 86°F. Based on growing degree days alone, the first spring blooms in Sofia should appear around April 9, only rarely appearing before March 23 or after April 28. Solar EnergyThis section discusses the total daily incident shortwave solar energy reaching the surface of the ground over a wide area, taking full account of seasonal variations in the length of the day, the elevation of the Sun above the horizon, and absorption by clouds and other atmospheric constituents. Shortwave radiation includes visible light and ultraviolet radiation. The average daily incident shortwave solar energy experiences extreme seasonal variation over the course of the year. The brighter period of the year lasts for 3.1 months, from May 18 to August 20, with an average daily incident shortwave energy per square meter above 6.3 kWh. The brightest month of the year in Sofia is July, with an average of 7.3 kWh. The darker period of the year lasts for 3.5 months, from October 30 to February 14, with an average daily incident shortwave energy per square meter below 2.9 kWh. The darkest month of the year in Sofia is December, with an average of 1.8 kWh.
TopographyFor the purposes of this report, the geographical coordinates of Sofia are 42.698 deg latitude, 23.324 deg longitude, and 1,844 ft elevation. The topography within 2 miles of Sofia contains only modest variations in elevation, with a maximum elevation change of 322 feet and an average elevation above sea level of 1,818 feet. Within 10 miles contains only modest variations in elevation (5,830 feet). Within 50 miles also contains extreme variations in elevation (9,177 feet). The area within 2 miles of Sofia is covered by artificial surfaces (99%), within 10 miles by cropland (44%) and artificial surfaces (32%), and within 50 miles by trees (54%) and cropland (28%). Data SourcesThis report illustrates the typical weather in Sofia, based on a statistical analysis of historical hourly weather reports and model reconstructions from January 1, 1980 to December 31, 2016. Temperature and Dew PointThere are 3 weather stations near enough to contribute to our estimation of the temperature and dew point in Sofia. For each station, the records are corrected for the elevation difference between that station and Sofia according to the International Standard Atmosphere , and by the relative change present in the MERRA-2 satellite-era reanalysis between the two locations. The estimated value at Sofia is computed as the weighted average of the individual contributions from each station, with weights proportional to the inverse of the distance between Sofia and a given station. The stations contributing to this reconstruction are:
To get a sense of how much these sources agree with each other, you can view a comparison of Sofia and the stations that contribute to our estimates of its temperature history and climate. Please note that each source's contribution is adjusted for elevation and the relative change present in the MERRA-2 data. Other DataAll data relating to the Sun's position (e.g., sunrise and sunset) are computed using astronomical formulas from the book, Astronomical Algorithms 2nd Edition , by Jean Meeus. All other weather data, including cloud cover, precipitation, wind speed and direction, and solar flux, come from NASA's MERRA-2 Modern-Era Retrospective Analysis . This reanalysis combines a variety of wide-area measurements in a state-of-the-art global meteorological model to reconstruct the hourly history of weather throughout the world on a 50-kilometer grid. Land Use data comes from the Global Land Cover SHARE database , published by the Food and Agriculture Organization of the United Nations. Elevation data comes from the Shuttle Radar Topography Mission (SRTM) , published by NASA's Jet Propulsion Laboratory. Names, locations, and time zones of places and some airports come from the GeoNames Geographical Database . Time zones for airports and weather stations are provided by AskGeo.com . Maps are © OpenStreetMap contributors. DisclaimerThe information on this site is provided as is, without any assurances as to its accuracy or suitability for any purpose. Weather data is prone to errors, outages, and other defects. We assume no responsibility for any decisions made on the basis of the content presented on this site. We draw particular cautious attention to our reliance on the MERRA-2 model-based reconstructions for a number of important data series. While having the tremendous advantages of temporal and spatial completeness, these reconstructions: (1) are based on computer models that may have model-based errors, (2) are coarsely sampled on a 50 km grid and are therefore unable to reconstruct the local variations of many microclimates, and (3) have particular difficulty with the weather in some coastal areas, especially small islands. We further caution that our travel scores are only as good as the data that underpin them, that weather conditions at any given location and time are unpredictable and variable, and that the definition of the scores reflects a particular set of preferences that may not agree with those of any particular reader. Please review our full terms contained on our Terms of Service page. |