1. WeatherSpark.com
  2. Canada
  3. Alberta
  4. High Level

Average Weather in High Level Canada

In High Level, the summers are long, comfortable, and partly cloudy and the winters are frigid, snowy, and mostly cloudy. Over the course of the year, the temperature typically varies from -12°F to 75°F and is rarely below -36°F or above 84°F.

Climate Summary

52%52%25%25%overcastclearprecipitation: 2.4 inprecipitation: 2.4 in0.4 in0.4 inmuggy: 0%muggy: 0%0%0%drydryfrigidcoolcomfortablecoolfrigidtourism score: 4.9tourism score: 4.90.00.0JanFebMarAprMayJunJulAugSepOctNovDec
Click on each chart for more information.

Based on the tourism score, the best time of year to visit High Level for warm-weather activities is from late June to mid August.

Temperature

The warm season lasts for 4.1 months, from May 11 to September 15, with an average daily high temperature above 61°F. The hottest day of the year is July 23, with an average high of 75°F and low of 52°F.

The cold season lasts for 3.3 months, from November 17 to February 26, with an average daily high temperature below 19°F. The coldest day of the year is January 15, with an average low of -12°F and high of 5°F.

Average High and Low Temperature

The daily average high (red line) and low (blue line) temperature, with 25th to 75th and 10th to 90th percentile bands. The thin dotted lines are the corresponding average perceived temperatures.

The figure below shows you a compact characterization of the entire year of hourly average temperatures. The horizontal axis is the day of the year, the vertical axis is the hour of the day, and the color is the average temperature for that hour and day.

Average Hourly Temperature

Average Hourly Temperature in High LevelJanFebMarAprMayJunJulAugSepOctNovDec12 AM4 AM8 AM12 PM4 PM8 PM12 AMcoldcoolfrigidvery coldcomfortablefreezing
The average hourly temperature, color coded into bands: frigid < 15°F < freezing < 32°F < very cold < 45°F < cold < 55°F < cool < 65°F < comfortable < 75°F < warm < 85°F < hot < 95°F < sweltering. The shaded overlays indicate night and civil twilight.

Clouds

In High Level, the average percentage of the sky covered by clouds experiences significant seasonal variation over the course of the year.

The clearer part of the year in High Level begins around April 21 and lasts for 5.6 months, ending around October 7. On August 10, the clearest day of the year, the sky is clear, mostly clear, or partly cloudy 52% of the time, and overcast or mostly cloudy 48% of the time.

The cloudier part of the year begins around October 7 and lasts for 6.4 months, ending around April 21. On March 6, the cloudiest day of the year, the sky is overcast or mostly cloudy 75% of the time, and clear, mostly clear, or partly cloudy 25% of the time.

Cloud Cover Categories

Cloud Cover Categories in High LevelclearercloudiercloudierJanFebMarAprMayJunJulAugSepOctNovDec0%100%10%90%20%80%30%70%40%60%50%50%60%40%70%30%80%20%90%10%100%0%Aug 1052%Aug 1052%Mar 625%Mar 625%Apr 2138%Apr 2138%Oct 738%Oct 738%partly cloudymostly cloudyclearovercastmostly clear
The percentage of time spent in each cloud cover band, categorized by the percentage of the sky covered by clouds: clear < 20% < mostly clear < 40% < partly cloudy < 60% < mostly cloudy < 80% < overcast.

Precipitation

A wet day is one with at least 0.04 inches of liquid or liquid-equivalent precipitation. The chance of wet days in High Level varies throughout the year.

The wetter season lasts 4.3 months, from May 6 to September 16, with a greater than 19% chance of a given day being a wet day. The chance of a wet day peaks at 28% on July 4.

The drier season lasts 7.7 months, from September 16 to May 6. The smallest chance of a wet day is 10% on February 18.

Among wet days, we distinguish between those that experience rain alone, snow alone, or a mixture of the two. Based on this categorization, the most common form of precipitation in High Level changes throughout the year.

Rain alone is the most common for 6.5 months, from April 5 to October 21. The highest chance of a day with rain alone is 28% on July 4.

Snow alone is the most common for 5.5 months, from October 21 to April 5. The highest chance of a day with snow alone is 13% on November 22.

Daily Chance of Precipitation

Daily Chance of Precipitation in High LevelsnowrainsnowJanFebMarAprMayJunJulAugSepOctNovDec0%10%20%30%40%50%60%70%80%90%100%Jul 428%Jul 428%Feb 1810%Feb 1810%Apr 511%Apr 511%Oct 2115%Oct 2115%Jan 111%Jan 111%May 619%May 619%Sep 1619%Sep 1619%snowrainmixed
The percentage of days in which various types of precipitation are observed, excluding trace quantities: rain alone, snow alone, and mixed (both rain and snow fell in the same day).

Rainfall

To show variation within the months and not just the monthly totals, we show the rainfall accumulated over a sliding 31-day period centered around each day of the year. High Level experiences significant seasonal variation in monthly rainfall.

The rainy period of the year lasts for 6.2 months, from April 13 to October 20, with a sliding 31-day rainfall of at least 0.5 inches. The most rain falls during the 31 days centered around July 13, with an average total accumulation of 2.4 inches.

The rainless period of the year lasts for 5.8 months, from October 20 to April 13. The least rain falls around January 22, with an average total accumulation of 0.0 inches.

Average Monthly Rainfall

The average rainfall (solid line) accumulated over the course of a sliding 31-day period centered on the day in question, with 25th to 75th and 10th to 90th percentile bands. The thin dotted line is the corresponding average liquid-equivalent snowfall.

Snowfall

We report snowfall in liquid-equivalent terms. The actual depth of new snowfall is typically between 5 and 10 times the liquid-equivalent amount, assuming the ground is frozen. Colder, drier snow tends to be on the higher end of that range and warmer, wetter snow on the lower end.

As with rainfall, we consider the snowfall accumulated over a sliding 31-day period centered around each day of the year. High Level experiences some seasonal variation in monthly liquid-equivalent snowfall.

The snowy period of the year lasts for 7.3 months, from September 29 to May 7, with a sliding 31-day liquid-equivalent snowfall of at least 0.1 inches. The most snow falls during the 31 days centered around November 14, with an average total liquid-equivalent accumulation of 0.6 inches.

The snowless period of the year lasts for 4.7 months, from May 7 to September 29. The least snow falls around July 17, with an average total liquid-equivalent accumulation of 0.0 inches.

Average Liquid-Equivalent Monthly Snowfall

The average liquid-equivalent snowfall (solid line) accumulated over the course of a sliding 31-day period centered on the day in question, with 25th to 75th and 10th to 90th percentile bands. The thin dotted line is the corresponding average rainfall.

Sun

The length of the day in High Level varies extremely over the course of the year. In 2017, the shortest day is December 21, with 6 hours, 19 minutes of daylight; the longest day is June 20, with 18 hours, 21 minutes of daylight.

Hours of Daylight and Twilight

The number of hours during which the Sun is visible (black line). From bottom (most yellow) to top (most gray), the color bands indicate: full daylight, twilight (civil, nautical, and astronomical), and full night.

The earliest sunrise is at 4:39 AM on June 18, and the latest sunrise is 4 hours, 59 minutes later at 9:38 AM on December 27. The earliest sunset is at 3:54 PM on December 15, and the latest sunset is 7 hours, 6 minutes later at 11:00 PM on June 23.

Daylight saving time (DST) is observed in High Level during 2017, starting in the spring on March 12, lasting 7.8 months, and ending in the fall on November 5.

Sunrise & Sunset with Twilight and Daylight Saving Time

Sunrise & Sunset with Twilight and Daylight Saving Time in High LevelJanFebMarAprMayJunJulAugSepOctNovDec2 AM4 AM6 AM8 AM10 AM12 PM2 PM4 PM6 PM8 PM10 PM12 AMJun 184:39 AMJun 184:39 AM11:00 PMJun 2311:00 PMJun 23Dec 153:54 PMDec 153:54 PM9:38 AMDec 279:38 AMDec 27Mar 12DSTMar 12DSTDSTNov 5DSTNov 5daynightnightnightnightSolarMidnightSolarMidnightSolarNoonSunriseSunset
The solar day over the course of the year 2017. From bottom to top, the black lines are the previous solar midnight, sunrise, solar noon, sunset, and the next solar midnight. The day, twilights (civil, nautical, and astronomical), and night are indicated by the color bands from yellow to gray. The transitions to and from daylight saving time are indicated by the 'DST' labels.

Humidity

We base the humidity comfort level on the dew point, as it determines whether perspiration will evaporate from the skin, thereby cooling the body. Lower dew points feel drier and higher dew points feel more humid. Unlike temperature, which typically varies significantly between night and day, dew point tends to change more slowly, so while the temperature may drop at night, a muggy day is typically followed by a muggy night.

The perceived humidity level in High Level, as measured by the percentage of time in which the humidity comfort level is muggy, oppressive, or miserable, does not vary significantly over the course of the year, remaining a virtually constant 0% throughout.

Humidity Comfort Levels

Humidity Comfort Levels in High LevelJanFebMarAprMayJunJulAugSepOctNovDec0%10%20%30%40%50%60%70%80%90%100%Nov 80%Nov 80%Jul 270%Jul 270%drydrycomfortablecomfortable
The percentage of time spent at various humidity comfort levels, categorized by dew point: dry < 55°F < comfortable < 60°F < humid < 65°F < muggy < 70°F < oppressive < 75°F < miserable.

Wind

This section discusses the wide-area hourly average wind vector (speed and direction) at 10 meters above the ground. The wind experienced at any given location is highly dependent on local topography and other factors, and instantaneous wind speed and direction vary more widely than hourly averages.

The average hourly wind speed in High Level experiences mild seasonal variation over the course of the year.

The windier part of the year lasts for 7.0 months, from October 19 to May 20, with average wind speeds of more than 4.1 miles per hour. The windiest day of the year is January 30, with an average hourly wind speed of 4.8 miles per hour.

The calmer time of year lasts for 5.0 months, from May 20 to October 19. The calmest day of the year is July 21, with an average hourly wind speed of 3.3 miles per hour.

Average Wind Speed

The average of mean hourly wind speeds (dark gray line), with 25th to 75th and 10th to 90th percentile bands.

The predominant average hourly wind direction in High Level varies throughout the year.

The wind is most often from the east for 4.7 months, from February 4 to June 26, with a peak percentage of 39% on March 28. The wind is most often from the west for 7.2 months, from June 26 to February 4, with a peak percentage of 37% on January 1.

Wind Direction

Wind Direction in High LevelWEWJanFebMarAprMayJunJulAugSepOctNovDec0%100%20%80%40%60%60%40%80%20%100%0%northeastwestsouth
The percentage of hours in which the mean wind direction is from each of the four cardinal wind directions (north, east, south, and west), excluding hours in which the mean wind speed is less than 1 mph. The lightly tinted areas at the boundaries are the percentage of hours spent in the implied intermediate directions (northeast, southeast, southwest, and northwest).

Best Time of Year to Visit

To characterize how pleasant the weather is in High Level throughout the year, we compute two travel scores.

The tourism score favors clear, rainless days with perceived temperatures between 65°F and 80°F. Based on this score, the best time of year to visit High Level for general outdoor tourist activities is from late June to mid August, with a peak score in the last week of July.

Tourism Score

Tourism Score in High Levelbest timeJanFebMarAprMayJunJulAugSepOctNovDec02468104.94.90.00.0 precipitationprecipitationcloudscloudstemperaturetemperaturetourism score
The tourism score (filled area), and its constituents: the temperature score (red line), the cloud cover score (blue line), and the precipitation score (green line).

The beach/pool score favors clear, rainless days with perceived temperatures between 75°F and 90°F. Based on this score, the best time of year to visit High Level for hot-weather activities is from early July to early August, with a peak score in the last week of July.

Beach/Pool Score

Beach/Pool Score in High LevelJanFebMarAprMayJunJulAugSepOctNovDec02468101.61.60.00.0 precipitationprecipitationcloudscloudstemperaturetemperature
The beach/pool score (filled area), and its constituents: the temperature score (red line), the cloud cover score (blue line), and the precipitation score (green line).

Methodology

For each hour between 8:00 AM and 9:00 PM of each day in the analysis period (1980 to 2016), independent scores are computed for perceived temperature, cloud cover, and total precipitation. Those scores are combined into a single hourly composite score, which is then aggregated into days, averaged over all the years in the analysis period, and smoothed.

Our cloud cover score is 10 for fully clear skies, falling linearly to 9 for mostly clear skies, and to 1 for fully overcast skies.

Our precipitation score, which is based on the three-hour precipitation centered on the hour in question, is 10 for no precipitation, falling linearly to 9 for trace precipitation, and to 0 for 0.04 inches of precipitation or more.

Our tourism temperature score is 0 for perceived temperatures below 50°F, rising linearly to 9 for 65°F, to 10 for 75°F, falling linearly to 9 for 80°F, and to 1 for 90°F or hotter.

Our beach/pool temperature score is 0 for perceived temperatures below 65°F, rising linearly to 9 for 75°F, to 10 for 82°F, falling linearly to 9 for 90°F, and to 1 for 100°F or hotter.

Growing Season

Definitions of the growing season vary throughout the world, but for the purposes of this report, we define it as the longest continuous period of non-freezing temperatures (≥ 32°F) in the year (the calendar year in the Northern Hemisphere, or from July 1 until June 30 in the Southern Hemisphere).

The growing season in High Level typically lasts for 3.5 months (107 days), from around May 24 to around September 8, rarely starting before May 5 or after June 10, and rarely ending before August 18 or after September 26.

Time Spent in Various Temperature Bands and the Growing Season

Time Spent in Various Temperature Bands and the Growing Season in High Levelgrowing seasonJanFebMarAprMayJunJulAugSepOctNovDec0%100%10%90%20%80%30%70%40%60%50%50%60%40%70%30%80%20%90%10%100%0%May 2450%May 2450%Sep 850%Sep 850%Jun 1090%Jun 1090%Aug 1890%Aug 1890%May 510%May 510%Sep 2610%Sep 2610%0%Nov 250%Nov 25Jul 8100%Jul 8100%comfortablecoldcoolfrigidfreezingvery cold
The percentage of time spent in various temperature bands: frigid < 15°F < freezing < 32°F < very cold < 45°F < cold < 55°F < cool < 65°F < comfortable < 75°F < warm < 85°F < hot < 95°F < sweltering. The black line is the percentage chance that a given day is within the growing season.

Growing degree days are a measure of yearly heat accumulation used to predict plant and animal development, and defined as the integral of warmth above a base temperature, discarding any excess above a maximum temperature. In this report, we use a base of 50°F and a cap of 86°F.

Based on growing degree days alone, the first spring blooms in High Level should appear around May 16, only rarely appearing before May 5 or after May 27.

Growing Degree Days

Growing Degree Days in High LevelJanFebMarAprMayJunJulAugSepOctNovDec0°F200°F400°F600°F800°F1,000°F1,200°F1,400°FMay 1690°FMay 1690°FAug 2900°FAug 2900°FDec 311,325°FDec 311,325°F
The average growing degree days accumulated over the course of the year, with 25th to 75th and 10th to 90th percentile bands.

Solar Energy

This section discusses the total daily incident shortwave solar energy reaching the surface of the ground over a wide area, taking full account of seasonal variations in the length of the day, the elevation of the Sun above the horizon, and absorption by clouds and other atmospheric constituents. Shortwave radiation includes visible light and ultraviolet radiation.

The average daily incident shortwave solar energy experiences extreme seasonal variation over the course of the year.

The brighter period of the year lasts for 3.5 months, from April 29 to August 13, with an average daily incident shortwave energy per square meter above 5.0 kWh. The brightest day of the year is June 20, with an average of 6.2 kWh.

The darker period of the year lasts for 4.0 months, from October 19 to February 20, with an average daily incident shortwave energy per square meter below 1.5 kWh. The darkest day of the year is December 21, with an average of 0.3 kWh.

Average Daily Incident Shortwave Solar Energy

The average daily shortwave solar energy reaching the ground per square meter (orange line), with 25th to 75th and 10th to 90th percentile bands.

Topography

For the purposes of this report, the geographical coordinates of High Level are 58.517 deg latitude, -117.136 deg longitude, and 1,076 ft elevation.

The topography within 2 miles of High Level is essentially flat, with a maximum elevation change of 59 feet and an average elevation above sea level of 1,069 feet. Within 10 miles is essentially flat (236 feet). Within 50 miles contains only modest variations in elevation (2,346 feet).

The area within 2 miles of High Level is covered by trees (51%), cropland (24%), and sparse vegetation (20%), within 10 miles by trees (69%) and cropland (20%), and within 50 miles by trees (69%) and herbaceous vegetation (12%).

Data Sources

This report illustrates the typical weather in High Level, based on a statistical analysis of historical hourly weather reports and model reconstructions from January 1, 1980 to December 31, 2016.

Temperature and Dew Point

There are 2 weather stations near enough to contribute to our estimation of the temperature and dew point in High Level.

For each station, the records are corrected for the elevation difference between that station and High Level according to the International Standard Atmosphere , and by the relative change present in the MERRA-2 satellite-era reanalysis between the two locations.

The estimated value at High Level is computed as the weighted average of the individual contributions from each station, with weights proportional to the inverse of the distance between High Level and a given station.

The stations contributing to this reconstruction are: High Level Airport (93%, 12 kilometers, north) and Fort Vermilion (7%, 66 kilometers, east).

Other Data

All data relating to the Sun's position (e.g., sunrise and sunset) are computed using astronomical formulas from the book, Astronomical Tables of the Sun, Moon and Planets , by Jean Meeus.

All other weather data, including cloud cover, precipitation, wind speed and direction, and solar flux, come from NASA's MERRA-2 Modern-Era Retrospective Analysis . This reanalysis combines a variety of wide-area measurements in a state-of-the-art global meteorological model to reconstruct the hourly history of weather throughout the world on a 50-kilometer grid.

Land Use data comes from the Global Land Cover SHARE database , published by the Food and Agriculture Organization of the United Nations.

Elevation data comes from the Shuttle Radar Topography Mission (SRTM) , published by NASA's Jet Propulsion Laboratory.

Names, locations, and time zones of places and some airports come from the GeoNames Geographical Database .

Time zones for aiports and weather stations are provided by AskGeo.com .

Maps are © Esri, with data from National Geographic, Esri, DeLorme, NAVTEQ, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, and iPC.

Disclaimer

The information on this site is provided as is, without any assurances as to its accuracy or suitability for any purpose. Weather data is prone to errors, outages, and other defects. We assume no responsibility for any decisions made on the basis of the content presented on this site.

We draw particular cautious attention to our reliance on the MERRA-2 model-based reconstructions for a number of important data series. While having the tremendous advantages of temporal and spatial completeness, these reconstructions: (1) are based on computer models that may have model-based errors, (2) are coarsely sampled on a 50 km grid and are therefore unable to reconstruct the local variations of many microclimates, and (3) have particular difficulty with the weather in some coastal areas, especially small islands.

We further caution that our travel scores are only as good as the data that underpin them, that weather conditions at any given location and time are unpredictable and variable, and that the definition of the scores reflects a particular set of preferences that may not agree with those of any particular reader.