1. WeatherSpark.com
  2. Canada
  3. Princeton Aerodrome

Average Weather at Princeton Aerodrome Canada

At Princeton Aerodrome, the summers are warm and partly cloudy, the winters are freezing and mostly cloudy, and it is dry year round. Over the course of the year, the temperature typically varies from 14°F to 82°F and is rarely below -3°F or above 92°F.

Climate Summary

freezingvery coldcoldcoolcomfortablewarmcoolcoldfreezingJanFebMarAprMayJunJulAugSepOctNovDec68%68%32%32%overcastprecipitation: 2.5 inprecipitation: 2.5 in0.7 in0.7 inmuggy: 0%muggy: 0%0%0%drydrytourism score: 5.5tourism score: 5.50.00.0
Click on each chart for more information.

Based on the tourism score, the best time of year to visit Princeton Aerodrome for warm-weather activities is from mid July to mid August.

Temperature

The warm season lasts for 3.1 months, from June 12 to September 16, with an average daily high temperature above 71°F. The hottest day of the year is August 3, with an average high of 82°F and low of 50°F.

The cold season lasts for 3.1 months, from November 17 to February 20, with an average daily high temperature below 38°F. The coldest day of the year is December 29, with an average low of 14°F and high of 27°F.

Average High and Low Temperature

Average High and Low Temperature at Princeton AerodromewarmcoldcoldJanFebMarAprMayJunJulAugSepOctNovDec-10°F0°F10°F20°F30°F40°F50°F60°F70°F80°F90°F100°FDec 2927°FDec 2927°FAug 382°FAug 382°F14°F14°F50°F50°FJun 1271°FJun 1271°FSep 1671°FSep 1671°FFeb 2038°FFeb 2038°F45°F45°F40°F40°F24°F24°F19°F19°FLowHigh
The daily average high (red line) and low (blue line) temperature, with 25th to 75th and 10th to 90th percentile bands. The thin dotted lines are the corresponding average perceived temperatures.

The figure below shows you a compact characterization of the entire year of hourly average temperatures. The horizontal axis is the day of the year, the vertical axis is the hour of the day, and the color is the average temperature for that hour and day.

Average Hourly Temperature

Average Hourly Temperature at Princeton AerodromeJanFebMarAprMayJunJulAugSepOctNovDec12 AM4 AM8 AM12 PM4 PM8 PM12 AMfreezingfreezingvery coldcoldcoolcoolwarmvery coldcomfortable
The average hourly temperature, color coded into bands: frigid < 15°F < freezing < 32°F < very cold < 45°F < cold < 55°F < cool < 65°F < comfortable < 75°F < warm < 85°F < hot < 95°F < sweltering. The shaded overlays indicate night and civil twilight.

Hriňová, Slovakia (5,263 miles away); Koprivshtitsa, Bulgaria (5,733 miles); and Evren, Turkey (6,123 miles) are the far-away foreign places with temperatures most similar to Princeton Aerodrome (view comparison).

Clouds

At Princeton Aerodrome, the average percentage of the sky covered by clouds experiences significant seasonal variation over the course of the year.

The clearer part of the year at Princeton Aerodrome begins around June 24 and lasts for 3.1 months, ending around September 27. On August 3, the clearest day of the year, the sky is clear, mostly clear, or partly cloudy 68% of the time, and overcast or mostly cloudy 32% of the time.

The cloudier part of the year begins around September 27 and lasts for 8.9 months, ending around June 24. On January 20, the cloudiest day of the year, the sky is overcast or mostly cloudy 68% of the time, and clear, mostly clear, or partly cloudy 32% of the time.

Cloud Cover Categories

Cloud Cover Categories at Princeton AerodromeclearercloudiercloudierJanFebMarAprMayJunJulAugSepOctNovDec0%100%10%90%20%80%30%70%40%60%50%50%60%40%70%30%80%20%90%10%100%0%Aug 368%Aug 368%Jan 2032%Jan 2032%Jun 2449%Jun 2449%Sep 2750%Sep 2750%clearovercastmostly clearpartly cloudymostly cloudy
The percentage of time spent in each cloud cover band, categorized by the percentage of the sky covered by clouds: clear < 20% < mostly clear < 40% < partly cloudy < 60% < mostly cloudy < 80% < overcast.

Precipitation

A wet day is one with at least 0.04 inches of liquid or liquid-equivalent precipitation. The chance of wet days at Princeton Aerodrome varies throughout the year.

The wetter season lasts 8.0 months, from October 13 to June 13, with a greater than 25% chance of a given day being a wet day. The chance of a wet day peaks at 39% on November 18.

The drier season lasts 4.0 months, from June 13 to October 13. The smallest chance of a wet day is 10% on August 11.

Among wet days, we distinguish between those that experience rain alone, snow alone, or a mixture of the two. Based on this categorization, the most common form of precipitation at Princeton Aerodrome changes throughout the year.

Rain alone is the most common for 9.3 months, from February 14 to November 24. The highest chance of a day with rain alone is 27% on October 28.

Snow alone is the most common for 2.0 months, from December 4 to February 2. The highest chance of a day with snow alone is 19% on January 3.

Mixed snow and rain is the most common for 3.1 weeks, from February 2 to February 14 and from November 24 to December 4. The highest chance of a day with mixed snow and rain is 14% on November 28.

Daily Chance of Precipitation

Daily Chance of Precipitation at Princeton AerodromesnowrainsnowJanFebMarAprMayJunJulAugSepOctNovDec0%10%20%30%40%50%60%70%80%90%100%Nov 1839%Nov 1839%Aug 1110%Aug 1110%Feb 226%Feb 226%Jan 129%Jan 129%Oct 1325%Oct 1325%Jun 1325%Jun 1325%snowrainmixed
The percentage of days in which various types of precipitation are observed, excluding trace quantities: rain alone, snow alone, and mixed (both rain and snow fell in the same day).

Rainfall

To show variation within the months and not just the monthly totals, we show the rainfall accumulated over a sliding 31-day period centered around each day of the year. Princeton Aerodrome experiences some seasonal variation in monthly rainfall.

Rain falls throughout the year at Princeton Aerodrome. The most rain falls during the 31 days centered around November 8, with an average total accumulation of 2.1 inches.

The least rain falls around January 1, with an average total accumulation of 0.7 inches.

Average Monthly Rainfall

The average rainfall (solid line) accumulated over the course of a sliding 31-day period centered on the day in question, with 25th to 75th and 10th to 90th percentile bands. The thin dotted line is the corresponding average liquid-equivalent snowfall.

Snowfall

We report snowfall in liquid-equivalent terms. The actual depth of new snowfall is typically between 5 and 10 times the liquid-equivalent amount, assuming the ground is frozen. Colder, drier snow tends to be on the higher end of that range and warmer, wetter snow on the lower end.

As with rainfall, we consider the snowfall accumulated over a sliding 31-day period centered around each day of the year. Princeton Aerodrome experiences significant seasonal variation in monthly liquid-equivalent snowfall.

The snowy period of the year lasts for 5.4 months, from October 18 to March 30, with a sliding 31-day liquid-equivalent snowfall of at least 0.1 inches. The most snow falls during the 31 days centered around January 3, with an average total liquid-equivalent accumulation of 1.2 inches.

The snowless period of the year lasts for 6.6 months, from March 30 to October 18. The least snow falls around July 29, with an average total liquid-equivalent accumulation of 0.0 inches.

Average Liquid-Equivalent Monthly Snowfall

Average Liquid-Equivalent Monthly Snowfall at Princeton AerodromesnowsnowJanFebMarAprMayJunJulAugSepOctNovDec0.0 in0.5 in1.0 in1.5 in2.0 in2.5 inJan 31.2 inJan 31.2 inJul 290.0 inJul 290.0 inOct 180.1 inOct 180.1 inMar 300.1 inMar 300.1 in
The average liquid-equivalent snowfall (solid line) accumulated over the course of a sliding 31-day period centered on the day in question, with 25th to 75th and 10th to 90th percentile bands. The thin dotted line is the corresponding average rainfall.

Sun

The length of the day at Princeton Aerodrome varies extremely over the course of the year. In 2017, the shortest day is December 21, with 8 hours, 9 minutes of daylight; the longest day is June 20, with 16 hours, 17 minutes of daylight.

Hours of Daylight and Twilight

Hours of Daylight and Twilight at Princeton AerodromeJanFebMarAprMayJunJulAugSepOctNovDec0 hr24 hr4 hr20 hr8 hr16 hr12 hr12 hr16 hr8 hr20 hr4 hr24 hr0 hr12 hr, 8 minMar 2012 hr, 8 minMar 2016 hr, 17 minJun 2016 hr, 17 minJun 2012 hr, 10 minSep 2212 hr, 10 minSep 228 hr, 9 minDec 218 hr, 9 minDec 21nightnightday
The number of hours during which the Sun is visible (black line). From bottom (most yellow) to top (most gray), the color bands indicate: full daylight, twilight (civil, nautical, and astronomical), and full night.

The earliest sunrise is at 4:54 AM on June 16, and the latest sunrise is 3 hours, 3 minutes later at 7:58 AM on December 31. The earliest sunset is at 4:02 PM on December 11, and the latest sunset is 5 hours, 10 minutes later at 9:12 PM on June 25.

Daylight saving time (DST) is observed at Princeton Aerodrome during 2017, starting in the spring on March 12, lasting 7.8 months, and ending in the fall on November 5.

Sunrise & Sunset with Twilight and Daylight Saving Time

Sunrise & Sunset with Twilight and Daylight Saving Time at Princeton AerodromeJanFebMarAprMayJunJulAugSepOctNovDec12 AM2 AM4 AM6 AM8 AM10 AM12 PM2 PM4 PM6 PM8 PM10 PM12 AMJun 164:54 AMJun 164:54 AM9:12 PMJun 259:12 PMJun 25Dec 114:02 PMDec 114:02 PM7:58 AMDec 317:58 AMDec 31Mar 12DSTMar 12DSTDSTNov 5DSTNov 5daynightnightnightnightSolarMidnightSolarMidnightSolarNoonSunset
The solar day over the course of the year 2017. From bottom to top, the black lines are the previous solar midnight, sunrise, solar noon, sunset, and the next solar midnight. The day, twilights (civil, nautical, and astronomical), and night are indicated by the color bands from yellow to gray. The transitions to and from daylight saving time are indicated by the 'DST' labels.

Humidity

We base the humidity comfort level on the dew point, as it determines whether perspiration will evaporate from the skin, thereby cooling the body. Lower dew points feel drier and higher dew points feel more humid. Unlike temperature, which typically varies significantly between night and day, dew point tends to change more slowly, so while the temperature may drop at night, a muggy day is typically followed by a muggy night.

The perceived humidity level at Princeton Aerodrome, as measured by the percentage of time in which the humidity comfort level is muggy, oppressive, or miserable, does not vary significantly over the course of the year, remaining a virtually constant 0% throughout.

Humidity Comfort Levels

Humidity Comfort Levels at Princeton AerodromeJanFebMarAprMayJunJulAugSepOctNovDec0%10%20%30%40%50%60%70%80%90%100%Dec 290%Dec 290%Jun 290%Jun 290%drydry
The percentage of time spent at various humidity comfort levels, categorized by dew point: dry < 55°F < comfortable < 60°F < humid < 65°F < muggy < 70°F < oppressive < 75°F < miserable.

Wind

This section discusses the wide-area hourly average wind vector (speed and direction) at 10 meters above the ground. The wind experienced at any given location is highly dependent on local topography and other factors, and instantaneous wind speed and direction vary more widely than hourly averages.

The average hourly wind speed at Princeton Aerodrome does not vary significantly over the course of the year, remaining within 0.4 miles per hour of 4.0 miles per hour throughout.

Average Wind Speed

Average Wind Speed at Princeton AerodromeJanFebMarAprMayJunJulAugSepOctNovDec0 mph1 mph2 mph3 mph4 mph5 mph6 mphJan 174.4 mphJan 174.4 mphAug 143.6 mphAug 143.6 mph
The average of mean hourly wind speeds (dark gray line), with 25th to 75th and 10th to 90th percentile bands.

The predominant average hourly wind direction at Princeton Aerodrome varies throughout the year.

The wind is most often from the west for 7.1 months, from March 16 to October 18, with a peak percentage of 77% on June 30. The wind is most often from the south for 4.9 months, from October 18 to March 16, with a peak percentage of 42% on January 1.

Wind Direction

Wind Direction at Princeton AerodromeSWSJanFebMarAprMayJunJulAugSepOctNovDec0%100%20%80%40%60%60%40%80%20%100%0%westeastsouthnorth
The percentage of hours in which the mean wind direction is from each of the four cardinal wind directions (north, east, south, and west), excluding hours in which the mean wind speed is less than 1 mph. The lightly tinted areas at the boundaries are the percentage of hours spent in the implied intermediate directions (northeast, southeast, southwest, and northwest).

Best Time of Year to Visit

To characterize how pleasant the weather is at Princeton Aerodrome throughout the year, we compute two travel scores.

The tourism score favors clear, rainless days with perceived temperatures between 65°F and 80°F. Based on this score, the best time of year to visit Princeton Aerodrome for general outdoor tourist activities is from mid July to mid August, with a peak score in the last week of July.

Tourism Score

Tourism Score at Princeton AerodromeJanFebMarAprMayJunJulAugSepOctNovDec02468105.55.50.00.0 precipitationprecipitationcloudscloudstemperaturetemperaturetourism score
The tourism score (filled area), and its constituents: the temperature score (red line), the cloud cover score (blue line), and the precipitation score (green line).

The beach/pool score favors clear, rainless days with perceived temperatures between 75°F and 90°F. Based on this score, the best time of year to visit Princeton Aerodrome for hot-weather activities is from mid July to mid August, with a peak score in the first week of August.

Beach/Pool Score

Beach/Pool Score at Princeton AerodromeJanFebMarAprMayJunJulAugSepOctNovDec02468102.12.10.00.0 precipitationprecipitationcloudscloudstemperaturetemperature
The beach/pool score (filled area), and its constituents: the temperature score (red line), the cloud cover score (blue line), and the precipitation score (green line).

Methodology

For each hour between 8:00 AM and 9:00 PM of each day in the analysis period (1980 to 2016), independent scores are computed for perceived temperature, cloud cover, and total precipitation. Those scores are combined into a single hourly composite score, which is then aggregated into days, averaged over all the years in the analysis period, and smoothed.

Our cloud cover score is 10 for fully clear skies, falling linearly to 9 for mostly clear skies, and to 1 for fully overcast skies.

Our precipitation score, which is based on the three-hour precipitation centered on the hour in question, is 10 for no precipitation, falling linearly to 9 for trace precipitation, and to 0 for 0.04 inches of precipitation or more.

Our tourism temperature score is 0 for perceived temperatures below 50°F, rising linearly to 9 for 65°F, to 10 for 75°F, falling linearly to 9 for 80°F, and to 1 for 90°F or hotter.

Our beach/pool temperature score is 0 for perceived temperatures below 65°F, rising linearly to 9 for 75°F, to 10 for 82°F, falling linearly to 9 for 90°F, and to 1 for 100°F or hotter.

Growing Season

Definitions of the growing season vary throughout the world, but for the purposes of this report, we define it as the longest continuous period of non-freezing temperatures (≥ 32°F) in the year (the calendar year in the Northern Hemisphere, or from July 1 until June 30 in the Southern Hemisphere).

The growing season at Princeton Aerodrome typically lasts for 4.0 months (124 days), from around May 16 to around September 17, rarely starting before May 1 or after June 1, and rarely ending before August 30 or after October 3.

Time Spent in Various Temperature Bands and the Growing Season

Time Spent in Various Temperature Bands and the Growing Season at Princeton Aerodromegrowing seasonJanFebMarAprMayJunJulAugSepOctNovDec0%100%10%90%20%80%30%70%40%60%50%50%60%40%70%30%80%20%90%10%100%0%May 1650%May 1650%Sep 1750%Sep 1750%Jun 190%Jun 190%Aug 3090%Aug 3090%May 110%May 110%Oct 310%Oct 310%0%Nov 250%Nov 25Jul 16100%Jul 16100%very coldcoldcoolfrigidfreezingcomfortablehot
The percentage of time spent in various temperature bands: frigid < 15°F < freezing < 32°F < very cold < 45°F < cold < 55°F < cool < 65°F < comfortable < 75°F < warm < 85°F < hot < 95°F < sweltering. The black line is the percentage chance that a given day is within the growing season.

Growing degree days are a measure of yearly heat accumulation used to predict plant and animal development, and defined as the integral of warmth above a base temperature, discarding any excess above a maximum temperature. In this report, we use a base of 50°F and a cap of 86°F.

Based on growing degree days alone, the first spring blooms at Princeton Aerodrome should appear around May 9, only rarely appearing before April 27 or after May 23.

Growing Degree Days

Growing Degree Days at Princeton AerodromeJanFebMarAprMayJunJulAugSepOctNovDec0°F200°F400°F600°F800°F1,000°F1,200°F1,400°F1,600°F1,800°FMay 990°FMay 990°FJul 28900°FJul 28900°FDec 311,660°FDec 311,660°F
The average growing degree days accumulated over the course of the year, with 25th to 75th and 10th to 90th percentile bands.

Solar Energy

This section discusses the total daily incident shortwave solar energy reaching the surface of the ground over a wide area, taking full account of seasonal variations in the length of the day, the elevation of the Sun above the horizon, and absorption by clouds and other atmospheric constituents. Shortwave radiation includes visible light and ultraviolet radiation.

The average daily incident shortwave solar energy experiences extreme seasonal variation over the course of the year.

The brighter period of the year lasts for 3.4 months, from May 8 to August 21, with an average daily incident shortwave energy per square meter above 5.9 kWh. The brightest day of the year is July 15, with an average of 7.1 kWh.

The darker period of the year lasts for 3.7 months, from October 24 to February 15, with an average daily incident shortwave energy per square meter below 2.2 kWh. The darkest day of the year is December 23, with an average of 1.0 kWh.

Average Daily Incident Shortwave Solar Energy

Average Daily Incident Shortwave Solar Energy at Princeton AerodromebrightdarkdarkJanFebMarAprMayJunJulAugSepOctNovDec0 kWh1 kWh2 kWh3 kWh4 kWh5 kWh6 kWh7 kWh8 kWh9 kWhJul 157.1 kWhJul 157.1 kWhDec 231.0 kWhDec 231.0 kWhMay 85.9 kWhMay 85.9 kWhAug 215.9 kWhAug 215.9 kWhOct 242.2 kWhOct 242.2 kWhFeb 152.2 kWhFeb 152.2 kWh
The average daily shortwave solar energy reaching the ground per square meter (orange line), with 25th to 75th and 10th to 90th percentile bands.

Data Sources

This report illustrates the typical weather at Princeton Aerodrome, based on a statistical analysis of historical hourly weather reports and model reconstructions from January 1, 1980 to December 31, 2016.

Temperature and Dew Point

Princeton Aerodrome has a weather station that reported reliably enough during the analysis period that we have included it in our network. When available, historical temperature and dew point measurements are taken directly from this weather station. These records are obtained from NOAA's Integrated Surface Hourly data set, falling back on ICAO METAR records as required.

In the case of missing or erroneous measurements from this station, we fall back on records from nearby stations, adjusted according to typical seasonal and diurnal intra-station differences. For a given day of the year and hour of the day, the fallback station is selected to minimize the prediction error over the years for which there are measurements for both stations.

The stations on which we may fall back include but are not limited to Princeton Automatic Weather Reporting System, Summerland Automatic Weather Reporting System, Penticton Regional Airport, Hope Aerodrome, Osoyoos Automatic Weather Reporting System, Kamloops Auto, Kelowna International Airport, and Kamloops Airport.

Other Data

All data relating to the Sun's position (e.g., sunrise and sunset) are computed using astronomical formulas from the book, Astronomical Tables of the Sun, Moon and Planets , by Jean Meeus.

All other weather data, including cloud cover, precipitation, wind speed and direction, and solar flux, come from NASA's MERRA-2 Modern-Era Retrospective Analysis . This reanalysis combines a variety of wide-area measurements in a state-of-the-art global meteorological model to reconstruct the hourly history of weather throughout the world on a 50-kilometer grid.

Land Use data comes from the Global Land Cover SHARE database , published by the Food and Agriculture Organization of the United Nations.

Elevation data comes from the Shuttle Radar Topography Mission (SRTM) , published by NASA's Jet Propulsion Laboratory.

Names, locations, and time zones of places and some airports come from the GeoNames Geographical Database .

Time zones for aiports and weather stations are provided by AskGeo.com .

Maps are © Esri, with data from National Geographic, Esri, DeLorme, NAVTEQ, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, and iPC.

Disclaimer

The information on this site is provided as is, without any assurances as to its accuracy or suitability for any purpose. Weather data is prone to errors, outages, and other defects. We assume no responsibility for any decisions made on the basis of the content presented on this site.

We draw particular cautious attention to our reliance on the MERRA-2 model-based reconstructions for a number of important data series. While having the tremendous advantages of temporal and spatial completeness, these reconstructions: (1) are based on computer models that may have model-based errors, (2) are coarsely sampled on a 50 km grid and are therefore unable to reconstruct the local variations of many microclimates, and (3) have particular difficulty with the weather in some coastal areas, especially small islands.

We further caution that our travel scores are only as good as the data that underpin them, that weather conditions at any given location and time are unpredictable and variable, and that the definition of the scores reflects a particular set of preferences that may not agree with those of any particular reader.