1. WeatherSpark.com
  2. United States
  3. California
  4. McClellan–Palomar Airport

Average Weather at McClellan–Palomar Airport California, United States

At McClellan–Palomar Airport, the summers are short, warm, arid, and clear and the winters are long, cool, and partly cloudy. Over the course of the year, the temperature typically varies from 48°F to 76°F and is rarely below 42°F or above 83°F.

Climate Summary

coolcomfortablewarmcomfortablecoolJanFebMarAprMayJunJulAugSepOctNovDec91%91%57%57%clearovercastprecipitation: 2.8 inprecipitation: 2.8 in0.0 in0.0 inmuggy: 26%muggy: 26%0%0%drydrytourism score: 9.0tourism score: 9.03.43.4
Click on each chart for more information.

Based on the tourism score, the best time of year to visit McClellan–Palomar Airport for warm-weather activities is from early June to mid October.

Temperature

The warm season lasts for 2.9 months, from July 6 to October 3, with an average daily high temperature above 74°F. The hottest day of the year is August 24, with an average high of 76°F and low of 66°F.

The cool season lasts for 4.5 months, from November 29 to April 13, with an average daily high temperature below 66°F. The coldest day of the year is December 27, with an average low of 48°F and high of 64°F.

Average High and Low Temperature

Average High and Low Temperature at McClellan–Palomar AirportwarmcoolcoolJanFebMarAprMayJunJulAugSepOctNovDec0°F10°F20°F30°F40°F50°F60°F70°F80°F90°F100°FDec 2764°FDec 2764°FAug 2476°FAug 2476°F48°F48°F66°F66°FJul 674°FJul 674°FOct 374°FOct 374°FApr 1366°FApr 1366°F64°F64°F63°F63°F54°F54°FLowHigh
The daily average high (red line) and low (blue line) temperature, with 25th to 75th and 10th to 90th percentile bands. The thin dotted lines are the corresponding average perceived temperatures.

The figure below shows you a compact characterization of the entire year of hourly average temperatures. The horizontal axis is the day of the year, the vertical axis is the hour of the day, and the color is the average temperature for that hour and day.

Average Hourly Temperature

Average Hourly Temperature at McClellan–Palomar AirportJanFebMarAprMayJunJulAugSepOctNovDec12 AM4 AM8 AM12 PM4 PM8 PM12 AMcoldcoldcoldcoolcoolcomfortablecoldwarm
The average hourly temperature, color coded into bands: frigid < 15°F < freezing < 32°F < very cold < 45°F < cold < 55°F < cool < 65°F < comfortable < 75°F < warm < 85°F < hot < 95°F < sweltering. The shaded overlays indicate night and civil twilight.

Cape Town, South Africa (9,916 miles away) and Ulladulla, Australia (7,613 miles) are the far-away foreign places with temperatures most similar to McClellan–Palomar Airport (view comparison).

Clouds

At McClellan–Palomar Airport, the average percentage of the sky covered by clouds experiences significant seasonal variation over the course of the year.

The clearer part of the year at McClellan–Palomar Airport begins around April 26 and lasts for 6.2 months, ending around November 2. On September 7, the clearest day of the year, the sky is clear, mostly clear, or partly cloudy 91% of the time, and overcast or mostly cloudy 9% of the time.

The cloudier part of the year begins around November 2 and lasts for 5.8 months, ending around April 26. On February 20, the cloudiest day of the year, the sky is overcast or mostly cloudy 43% of the time, and clear, mostly clear, or partly cloudy 57% of the time.

Cloud Cover Categories

Cloud Cover Categories at McClellan–Palomar AirportclearercloudiercloudierJanFebMarAprMayJunJulAugSepOctNovDec0%100%10%90%20%80%30%70%40%60%50%50%60%40%70%30%80%20%90%10%100%0%Sep 791%Sep 791%Feb 2057%Feb 2057%Apr 2673%Apr 2673%Nov 274%Nov 274%clearmostly clearovercastpartly cloudy
The percentage of time spent in each cloud cover band, categorized by the percentage of the sky covered by clouds: clear < 20% < mostly clear < 40% < partly cloudy < 60% < mostly cloudy < 80% < overcast.

Precipitation

A wet day is one with at least 0.04 inches of liquid or liquid-equivalent precipitation. The chance of wet days at McClellan–Palomar Airport varies throughout the year.

The wetter season lasts 4.5 months, from November 21 to April 5, with a greater than 11% chance of a given day being a wet day. The chance of a wet day peaks at 21% on February 21.

The drier season lasts 7.5 months, from April 5 to November 21. The smallest chance of a wet day is 1% on June 25.

Among wet days, we distinguish between those that experience rain alone, snow alone, or a mixture of the two. Based on this categorization, the most common form of precipitation throughout the year is rain alone, with a peak probability of 21% on February 21.

Daily Chance of Precipitation

Daily Chance of Precipitation at McClellan–Palomar AirportwetwetdryJanFebMarAprMayJunJulAugSepOctNovDec0%10%20%30%40%50%60%70%80%90%100%Feb 2121%Feb 2121%Jun 251%Jun 251%Jan 117%Jan 117%Nov 2111%Nov 2111%Apr 511%Apr 511%rain
The percentage of days in which various types of precipitation are observed, excluding trace quantities: rain alone, snow alone, and mixed (both rain and snow fell in the same day).

Rainfall

To show variation within the months and not just the monthly totals, we show the rainfall accumulated over a sliding 31-day period centered around each day of the year. McClellan–Palomar Airport experiences significant seasonal variation in monthly rainfall.

The rainy period of the year lasts for 6.2 months, from October 19 to April 25, with a sliding 31-day rainfall of at least 0.5 inches. The most rain falls during the 31 days centered around February 20, with an average total accumulation of 2.8 inches.

The rainless period of the year lasts for 5.8 months, from April 25 to October 19. The least rain falls around June 23, with an average total accumulation of 0.0 inches.

Average Monthly Rainfall

Average Monthly Rainfall at McClellan–Palomar AirportrainrainJanFebMarAprMayJunJulAugSepOctNovDec0 in1 in2 in3 in4 in5 in6 in7 inFeb 202.8 inFeb 202.8 inJun 230.0 inJun 230.0 inOct 190.5 inOct 190.5 inApr 250.5 inApr 250.5 in
The average rainfall (solid line) accumulated over the course of a sliding 31-day period centered on the day in question, with 25th to 75th and 10th to 90th percentile bands. The thin dotted line is the corresponding average liquid-equivalent snowfall.

Sun

The length of the day at McClellan–Palomar Airport varies significantly over the course of the year. In 2017, the shortest day is December 21, with 9 hours, 58 minutes of daylight; the longest day is June 20, with 14 hours, 21 minutes of daylight.

Hours of Daylight and Twilight

Hours of Daylight and Twilight at McClellan–Palomar AirportJanFebMarAprMayJunJulAugSepOctNovDec0 hr24 hr4 hr20 hr8 hr16 hr12 hr12 hr16 hr8 hr20 hr4 hr24 hr0 hr12 hr, 7 minMar 2012 hr, 7 minMar 2014 hr, 21 minJun 2014 hr, 21 minJun 2012 hr, 8 minSep 2212 hr, 8 minSep 229 hr, 58 minDec 219 hr, 58 minDec 21nightnightday
The number of hours during which the Sun is visible (black line). From bottom (most yellow) to top (most gray), the color bands indicate: full daylight, twilight (civil, nautical, and astronomical), and full night.

The earliest sunrise is at 5:39 AM on June 11, and the latest sunrise is 1 hour, 31 minutes later at 7:10 AM on November 4. The earliest sunset is at 4:41 PM on December 4, and the latest sunset is 3 hours, 20 minutes later at 8:02 PM on June 29.

Daylight saving time (DST) is observed at McClellan–Palomar Airport during 2017, starting in the spring on March 12, lasting 7.8 months, and ending in the fall on November 5.

Sunrise & Sunset with Twilight and Daylight Saving Time

Sunrise & Sunset with Twilight and Daylight Saving Time at McClellan–Palomar AirportJanFebMarAprMayJunJulAugSepOctNovDec12 AM2 AM4 AM6 AM8 AM10 AM12 PM2 PM4 PM6 PM8 PM10 PM12 AMJun 115:39 AMJun 115:39 AM8:02 PMJun 298:02 PMJun 29Dec 44:41 PMDec 44:41 PM7:10 AMNov 47:10 AMNov 4Mar 12DSTMar 12DSTDSTNov 5DSTNov 5daynightnightnightnightSolarMidnightSolarMidnightSolarNoonSunriseSunset
The solar day over the course of the year 2017. From bottom to top, the black lines are the previous solar midnight, sunrise, solar noon, sunset, and the next solar midnight. The day, twilights (civil, nautical, and astronomical), and night are indicated by the color bands from yellow to gray. The transitions to and from daylight saving time are indicated by the 'DST' labels.

Humidity

We base the humidity comfort level on the dew point, as it determines whether perspiration will evaporate from the skin, thereby cooling the body. Lower dew points feel drier and higher dew points feel more humid. Unlike temperature, which typically varies significantly between night and day, dew point tends to change more slowly, so while the temperature may drop at night, a muggy day is typically followed by a muggy night.

McClellan–Palomar Airport experiences some seasonal variation in the perceived humidity.

The muggier period of the year lasts for 3.3 months, from June 29 to October 6, during which time the comfort level is muggy, oppressive, or miserable at least 7% of the time. The muggiest day of the year is August 24, with muggy conditions 26% of the time.

The least muggy day of the year is February 21, when muggy conditions are essentially unheard of.

Humidity Comfort Levels

Humidity Comfort Levels at McClellan–Palomar AirportmuggyJanFebMarAprMayJunJulAugSepOctNovDec0%10%20%30%40%50%60%70%80%90%100%Feb 210%Feb 210%Aug 2426%Aug 2426%Jun 297%Jun 297%Oct 67%Oct 67%muggymuggyhumidhumidcomfortablecomfortabledrydryoppressiveoppressive
The percentage of time spent at various humidity comfort levels, categorized by dew point: dry < 55°F < comfortable < 60°F < humid < 65°F < muggy < 70°F < oppressive < 75°F < miserable.

Wind

This section discusses the wide-area hourly average wind vector (speed and direction) at 10 meters above the ground. The wind experienced at any given location is highly dependent on local topography and other factors, and instantaneous wind speed and direction vary more widely than hourly averages.

The average hourly wind speed at McClellan–Palomar Airport experiences mild seasonal variation over the course of the year.

The windier part of the year lasts for 6.8 months, from November 13 to June 6, with average wind speeds of more than 6.4 miles per hour. The windiest day of the year is April 11, with an average hourly wind speed of 7.4 miles per hour.

The calmer time of year lasts for 5.2 months, from June 6 to November 13. The calmest day of the year is August 23, with an average hourly wind speed of 5.4 miles per hour.

Average Wind Speed

Average Wind Speed at McClellan–Palomar AirportwindywindyJanFebMarAprMayJunJulAugSepOctNovDec0 mph2 mph4 mph6 mph8 mph10 mph12 mphApr 117.4 mphApr 117.4 mphAug 235.4 mphAug 235.4 mphNov 136.4 mphNov 136.4 mphJun 66.4 mphJun 66.4 mph
The average of mean hourly wind speeds (dark gray line), with 25th to 75th and 10th to 90th percentile bands.

The predominant average hourly wind direction at McClellan–Palomar Airport varies throughout the year.

The wind is most often from the west for 10 months, from January 25 to December 2, with a peak percentage of 80% on May 29. The wind is most often from the east for 1.7 months, from December 2 to January 25, with a peak percentage of 38% on January 1.

Wind Direction

Wind Direction at McClellan–Palomar AirportEWEJanFebMarAprMayJunJulAugSepOctNovDec0%100%20%80%40%60%60%40%80%20%100%0%westeastnorthsouth
The percentage of hours in which the mean wind direction is from each of the four cardinal wind directions (north, east, south, and west), excluding hours in which the mean wind speed is less than 1 mph. The lightly tinted areas at the boundaries are the percentage of hours spent in the implied intermediate directions (northeast, southeast, southwest, and northwest).

Water Temperature

McClellan–Palomar Airport is located near a large body of water (e.g., ocean, sea, or large lake). This section reports on the wide-area average surface temperature of that water.

The average water temperature experiences some seasonal variation over the course of the year.

The time of year with warmer water lasts for 2.9 months, from July 9 to October 6, with an average temperature above 68°F. The day of the year with the warmest water is August 23, with an average temperature of 70°F.

The time of year with cooler water lasts for 4.4 months, from December 8 to April 21, with an average temperature below 61°F. The day of the year with the coolest water is February 4, with an average temperature of 59°F.

Average Water Temperature

Average Water Temperature at McClellan–Palomar AirportwarmcoolcoolJanFebMarAprMayJunJulAugSepOctNovDec56°F58°F60°F62°F64°F66°F68°F70°F72°F74°F76°FAug 2370°FAug 2370°F59°FFeb 459°FFeb 4Jul 968°FJul 968°FOct 668°FOct 668°FDec 861°FDec 861°FApr 2161°FApr 2161°F
The daily average water temperature (purple line), with 25th to 75th and 10th to 90th percentile bands.

Best Time of Year to Visit

To characterize how pleasant the weather is at McClellan–Palomar Airport throughout the year, we compute two travel scores.

The tourism score favors clear, rainless days with perceived temperatures between 65°F and 80°F. Based on this score, the best time of year to visit McClellan–Palomar Airport for general outdoor tourist activities is from early June to mid October, with a peak score in the third week of August.

Tourism Score

Tourism Score at McClellan–Palomar Airportbest timeJanFebMarAprMayJunJulAugSepOctNovDec02468109.09.03.43.4 precipitationprecipitationcloudscloudstemperaturetemperaturetourism score
The tourism score (filled area), and its constituents: the temperature score (red line), the cloud cover score (blue line), and the precipitation score (green line).

The beach/pool score favors clear, rainless days with perceived temperatures between 75°F and 90°F. Based on this score, the best time of year to visit McClellan–Palomar Airport for hot-weather activities is from late July to early September, with a peak score in the last week of August.

Beach/Pool Score

Beach/Pool Score at McClellan–Palomar Airportbest timeJanFebMarAprMayJunJulAugSepOctNovDec02468105.75.70.30.3 precipitationprecipitationcloudscloudstemperaturetemperaturebeach/pool score
The beach/pool score (filled area), and its constituents: the temperature score (red line), the cloud cover score (blue line), and the precipitation score (green line).

Methodology

For each hour between 8:00 AM and 9:00 PM of each day in the analysis period (1980 to 2016), independent scores are computed for perceived temperature, cloud cover, and total precipitation. Those scores are combined into a single hourly composite score, which is then aggregated into days, averaged over all the years in the analysis period, and smoothed.

Our cloud cover score is 10 for fully clear skies, falling linearly to 9 for mostly clear skies, and to 1 for fully overcast skies.

Our precipitation score, which is based on the three-hour precipitation centered on the hour in question, is 10 for no precipitation, falling linearly to 9 for trace precipitation, and to 0 for 0.04 inches of precipitation or more.

Our tourism temperature score is 0 for perceived temperatures below 50°F, rising linearly to 9 for 65°F, to 10 for 75°F, falling linearly to 9 for 80°F, and to 1 for 90°F or hotter.

Our beach/pool temperature score is 0 for perceived temperatures below 65°F, rising linearly to 9 for 75°F, to 10 for 82°F, falling linearly to 9 for 90°F, and to 1 for 100°F or hotter.

Growing Season

Definitions of the growing season vary throughout the world, but for the purposes of this report, we define it as the longest continuous period of non-freezing temperatures (≥ 32°F) in the year (the calendar year in the Northern Hemisphere, or from July 1 until June 30 in the Southern Hemisphere).

Temperatures at McClellan–Palomar Airport are sufficiently warm year round that it is not entirely meaningful to discuss the growing season in these terms. We nevertheless include the chart below as an illustration of the distribution of temperatures experienced throughout the year.

Time Spent in Various Temperature Bands and the Growing Season

Time Spent in Various Temperature Bands and the Growing Season at McClellan–Palomar AirportJanFebMarAprMayJunJulAugSepOctNovDec0%100%10%90%20%80%30%70%40%60%50%50%60%40%70%30%80%20%90%10%100%0%100%Jan 1100%Jan 1100%Jul 3100%Jul 3coldcoolcomfortablewarmvery cold
The percentage of time spent in various temperature bands: frigid < 15°F < freezing < 32°F < very cold < 45°F < cold < 55°F < cool < 65°F < comfortable < 75°F < warm < 85°F < hot < 95°F < sweltering. The black line is the percentage chance that a given day is within the growing season.

Growing degree days are a measure of yearly heat accumulation used to predict plant and animal development, and defined as the integral of warmth above a base temperature, discarding any excess above a maximum temperature. In this report, we use a base of 50°F and a cap of 86°F.

Growing Degree Days

Growing Degree Days at McClellan–Palomar AirportJanFebMarAprMayJunJulAugSepOctNovDec0°F1,000°F2,000°F3,000°F4,000°F5,000°FJan 1490°FJan 1490°FApr 25900°FApr 25900°FJun 291,800°FJun 291,800°FDec 314,626°FDec 314,626°F
The average growing degree days accumulated over the course of the year, with 25th to 75th and 10th to 90th percentile bands.

Solar Energy

This section discusses the total daily incident shortwave solar energy reaching the surface of the ground over a wide area, taking full account of seasonal variations in the length of the day, the elevation of the Sun above the horizon, and absorption by clouds and other atmospheric constituents. Shortwave radiation includes visible light and ultraviolet radiation.

The average daily incident shortwave solar energy experiences extreme seasonal variation over the course of the year.

The brighter period of the year lasts for 3.9 months, from April 24 to August 20, with an average daily incident shortwave energy per square meter above 7.3 kWh. The brightest day of the year is June 21, with an average of 8.4 kWh.

The darker period of the year lasts for 3.2 months, from November 6 to February 11, with an average daily incident shortwave energy per square meter below 4.1 kWh. The darkest day of the year is December 26, with an average of 3.1 kWh.

Average Daily Incident Shortwave Solar Energy

Average Daily Incident Shortwave Solar Energy at McClellan–Palomar AirportbrightdarkdarkJanFebMarAprMayJunJulAugSepOctNovDec0 kWh1 kWh2 kWh3 kWh4 kWh5 kWh6 kWh7 kWh8 kWh9 kWh10 kWhJun 218.4 kWhJun 218.4 kWhDec 263.1 kWhDec 263.1 kWhApr 247.3 kWhApr 247.3 kWhAug 207.3 kWhAug 207.3 kWhNov 64.1 kWhNov 64.1 kWhFeb 114.1 kWhFeb 114.1 kWh
The average daily shortwave solar energy reaching the ground per square meter (orange line), with 25th to 75th and 10th to 90th percentile bands.

Topography

For the purposes of this report, the geographical coordinates of McClellan–Palomar Airport are 33.128 deg latitude, -117.281 deg longitude, and 213 ft elevation.

The topography within 2 miles of McClellan–Palomar Airport contains significant variations in elevation, with a maximum elevation change of 518 feet and an average elevation above sea level of 227 feet. Within 10 miles contains significant variations in elevation (1,713 feet). Within 50 miles contains very significant variations in elevation (6,824 feet).

The area within 2 miles of McClellan–Palomar Airport is covered by artificial surfaces (75%), shrubs (11%), and cropland (10%), within 10 miles by artificial surfaces (42%) and water (29%), and within 50 miles by water (40%) and shrubs (37%).

Data Sources

This report illustrates the typical weather at McClellan–Palomar Airport, based on a statistical analysis of historical hourly weather reports and model reconstructions from January 1, 1980 to December 31, 2016.

Temperature and Dew Point

McClellan–Palomar Airport has a weather station that reported reliably enough during the analysis period that we have included it in our network. When available, historical temperature and dew point measurements are taken directly from this weather station. These records are obtained from NOAA's Integrated Surface Hourly data set, falling back on ICAO METAR records as required.

In the case of missing or erroneous measurements from this station, we fall back on records from nearby stations, adjusted according to typical seasonal and diurnal intra-station differences. For a given day of the year and hour of the day, the fallback station is selected to minimize the prediction error over the years for which there are measurements for both stations.

The stations on which we may fall back include but are not limited to Oceanside Municipal Airport; Oceanside, Camp Pendleton, Marine Corps Air Station; Miramar Marine Corps Air Station; Montgomery Field Airport; Ramona Airport; San Diego International Airport; Gillespie Field; and Naval Air Station North Island.

Other Data

All data relating to the Sun's position (e.g., sunrise and sunset) are computed using astronomical formulas from the book, Astronomical Tables of the Sun, Moon and Planets , by Jean Meeus.

All other weather data, including cloud cover, precipitation, wind speed and direction, and solar flux, come from NASA's MERRA-2 Modern-Era Retrospective Analysis . This reanalysis combines a variety of wide-area measurements in a state-of-the-art global meteorological model to reconstruct the hourly history of weather throughout the world on a 50-kilometer grid.

Land Use data comes from the Global Land Cover SHARE database , published by the Food and Agriculture Organization of the United Nations.

Elevation data comes from the Shuttle Radar Topography Mission (SRTM) , published by NASA's Jet Propulsion Laboratory.

Names, locations, and time zones of places and some airports come from the GeoNames Geographical Database .

Time zones for aiports and weather stations are provided by AskGeo.com .

Maps are © Esri, with data from National Geographic, Esri, DeLorme, NAVTEQ, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, and iPC.

Disclaimer

The information on this site is provided as is, without any assurances as to its accuracy or suitability for any purpose. Weather data is prone to errors, outages, and other defects. We assume no responsibility for any decisions made on the basis of the content presented on this site.

We draw particular cautious attention to our reliance on the MERRA-2 model-based reconstructions for a number of important data series. While having the tremendous advantages of temporal and spatial completeness, these reconstructions: (1) are based on computer models that may have model-based errors, (2) are coarsely sampled on a 50 km grid and are therefore unable to reconstruct the local variations of many microclimates, and (3) have particular difficulty with the weather in some coastal areas, especially small islands.

We further caution that our travel scores are only as good as the data that underpin them, that weather conditions at any given location and time are unpredictable and variable, and that the definition of the scores reflects a particular set of preferences that may not agree with those of any particular reader.